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Abstract

A thin circular plate rotating at constant angular speed around the axis perpendicular to the plane of the
plate is investigated in this paper. The axis of rotation is parallel to the plate’s axis of symmetry and the
distance between them is the plate’s eccentricity. The outer edge of the plate is attached to a rigid body
rotating together with the plate. The stresses and displacements in the plate’s middle plane are determined
in the paper. The natural frequencies of the transverse vibration with respect to angular speed and
eccentricity are determined using Galerkin’s method. The mode shapes for the certain frequencies are
shown. Due to the plate’s eccentricity and rotation, the mode shapes are deformed in comparison with the
plate without eccentricity. It is shown that frequencies split for the asymmetric mode shapes, so that there
are two different frequencies in those cases. The critical angular speed which results in stability loss in the
first mode is determined.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating plates are often parts of mechanical structures, which led to their being intensively
investigated during the recent years. Numerous examples show that ideal rotation is assumed
when conducting these investigations. However, manufacturing and mounting of a plate usually
result in the imperfect alignment, i.e. the misalignment between the axis of rotation and the axis of
see front matter r 2004 Elsevier Ltd. All rights reserved.
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symmetry. As a result of this, the plate rotates eccentrically. This phenomenon can influence the
stresses and vibration of such a plate.
In certain devices eccentrical rotating plates and discs are intentionally used. These devices are

applied in centrifuges, separators, rheometers, pumps, mechanical spectrometers, in the vacuum
technology, etc.
There is a great number of papers which have investigated eccentricity of annular plates and

discs. Mitchell and Warren [1] have determined the stress and displacement fields in a thin circular
disc rotating at the constant angular speed around an eccentric rigid insert. Lurie [2] has
determined the stresses in a rotating circular disc. These papers show that eccentricity of the
plate’s rotation greatly influences the stresses and displacements in the plate’s plane.
Various examples of the impact of the plate’s asymmetry on the frequency of the transverse

vibrations can be found among published works. For example, Khurasia and Rewtant [3] have
examined the effect of the existence of an eccentric hole on the circular plate on its vibration. It
has been shown that eccentricity of the central hole results in a significant change in frequencies
and mode shapes. A similar problem has been theoretically and experimentally investigated by
Cheng et al. [4]. It has been pointed out that the existence of an eccentricity will lead to the
splitting the frequency and making it double with a corresponding impact on the vibration mode.
Parker and Mote [5] have proposed a method for predicting natural frequencies of stationary

annular and circular plates with a slight deviation from axisymmetry. They have also discussed
the phenomenon of natural frequencies splitting.
Some authors have also examined rotating discs where the axis of rotation is misaligned with

the axis of symmetry. Chung et al. [6] have studied the effects of misalignment on the natural
frequencies of a rotating disc using Galerkin’s method. They have pointed out the existence of the
critical angular speed, among other things. Heo et al. [7] have analysed dynamic time response of
a misaligned rotating disc using the finite element method.
These papers have mostly investigated annular plates and discs with an imperfection of shape or

rotation. However, there are also cases of imperfection of rotating circular plates. Fig. 1 shows
examples of such plates. A plate of radius R and thickness h is clamped on the outer edge to a rigid
body of a suitable shape rotating together with the plate at a constant angular speed o. They
rotate together around the axis c, while o denotes the axis of symmetry of the plate. The
eccentricity of the plate, i.e. the distance between the axes o and c, is d. The support, which is not
shown, prevents the rigid body from moving in the radial direction, as well as in the direction
perpendicular to the plate’s plane. The bottoms of rotating vessels and centrifuges where
eccentricity is present and walls, which can be considered to be rigid compared to the bottom can
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Fig. 1. The examples of an eccentric rotating circular plate: (a) doR; (b) d4R.
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be modelled in this way. The case shown in Fig. 1b can be observed in lids of openings for cleaning
and intervention on large rotating vessels in industry.
The impact of angular speed and eccentricity on transverse vibration frequencies of the circular

plate shown will be examined in this paper. The mode shapes will be studied, the conditions
leading to the plate’s stability loss will be checked and the corresponding critical parameters will
be determined. It will also be shown that some shape modes result in frequency split.
2. Mathematical formulation of the problem

Consider a circular plate shown in Fig. 2 with the centre at point O rotating around an axis
perpendicular to the plane of the plate at point C. Let (r, y, z) be a movable cylindrical coordinate
system fixed to the middle plane of the plate with the origin at the centre of the plate O and the
axis z perpendicular to the plate. The unit vectors r0 and c0 rotate together with the plate. The
angle y is measured starting at the line OC which is moving together with the plate, q denotes the
inertial force per unit area in the middle plane of the plate and it is given by

q ¼ ðdþ rr0Þrho2; ð1Þ

where r denotes the mass per unit volume.
The components of the inertial force along the radial and circumferential axes are

qr ¼ rho2ðr þ d cos yÞ; qc ¼ �rho2d sin y ð2Þ

The force–displacements relationships in the polar coordinate system are

Nr ¼
Eh

1� n2
qu

qr
þ n

1
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qy
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� �� �
; ð3Þ
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Fig. 2. Geometry, load and coordinates of the plate.
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Nrc ¼
Eh

2ð1þ nÞ
1

r

qu

qy
þ

qv

qr
�

v

r

� �
; ð5Þ

where Nr and Nc are normal in-plane forces, and Nrc is a shear force, u and v denote the radial
and circumferential displacements of the middle plane, E denotes Young’s modulus and n
Poisson’s ratio.
The normal forces and the shear force in the plate are given by the equations of equilibrium

q
qr

ðrNrÞ � Nc þ
qNrc

qy
þ rqr ¼ 0; ð6Þ

qNc

qy
þ

q
qr

ðrNrcÞ þ Nrc þ rqc ¼ 0: ð7Þ

The transverse motion of the plate is modelled using the classical Kirchhof plate theory with
in-plane stresses. The governing differential equation of the motion is

Dr4w ¼ � hr
q2w
qt2

þ Nr
q2w
qr2

þ Nc
1

r

qw

qr
þ

1

r2
q2w

qy2

� �

þ 2Nrc

q
qr

1

r

qw

qy

� �
� qr

qw

qr
� qc

1

r

qw

qy
; ð8Þ

where w denotes the transverse displacement of the plate and D ¼ Eh3=12ð1� n2Þ is the flexural
rigidity.
The boundary conditions are given by

ujr¼R ¼ 0; vjr¼R ¼ 0; wjr¼R ¼ 0;
qw

qr

����
r¼R

¼ 0: ð9Þ

Substituting Eqs. (2)–(5) into Eqs. (6) and (7) and solving them with respect to the boundary
conditions yields

u ¼
ro2

E
ð1� n2ÞðR2 � r2Þ

r

8
þ

d

3� n
cos y

� �
; ð10Þ

v ¼ �
ro2

E

1� n2

3� n
ðR2 � r2Þd sin y: ð11Þ

Substituting Eqs. (10) and (11) into Eqs. (3)–(5) results in

Nr ¼ ro2h
1þ n
8

R2 �
3þ n
8

r2 �
2d

3� n
r cos y

� �
; ð12Þ

Nc ¼ ro2h
1þ n
8

R2 �
1þ 3n
8

r2 �
2nd

3� n
r cos y

� �
; ð13Þ

Nrc ¼ ro2hd
1� n
3� n

r sin y: ð14Þ
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Based on the Eqs. (12)–(14) the normal and tangential stresses in the middle plane of the plate
can be determined. Substituting Eqs. (2), (12)–(14) into Eq. (8) using the nondimensional
expressions

y ¼
w

h
; x ¼

r

R
; t ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
D

hrR4

s
; l ¼

ro2R4

Eh2
; e ¼

d

R
ð15Þ

gives

r4y � Z N1 þ N2 cos yð Þ
q2y
qx2

þ C1 þ C2 cos yð Þ
1

x

qy

qx
þ

1

x2

q2y

qy2

� ��

þ 2S1 sin y
1

x

q2y
qxqy

�
1

x2

qy

qy

� �
� lðx þ e cos yÞ

qy

qx
þ
le

x

qy

qy
sin y

�
þ

q2y
qt2

¼ 0; ð16Þ

where

N1 ¼
l
8
½1þ n� ð3þ nÞx2	; N2 ¼ �

2lex

3� n
;

C1 ¼
l
8
½1þ n� ð1þ 3nÞx2	; C2 ¼ �

2lexn
3� n

; ð17Þ

S1 ¼
1� n
3� n

lex; Z ¼ 12ð1� n2Þ:

The third and fourth boundary conditions in Eq. (9) are transformed into

yjx¼1 ¼ 0;
qy

qx

����
x¼1

¼ 0: ð18Þ

The problem of determining the transverse vibration frequency of an eccentric rotating plate is
reduced to solving Eq. (16) respecting the boundary conditions given in Eq. (18).
3. Numerical solutions

The solution of Eq. (16) is obtained applying the Galerkin’s method. To this end, the solution is
assumed in the form

�y ¼
XM

m¼0

Am0 Y m0ðxÞ þ
XM
m¼0

XN

n¼1

ðAmn cos nyþ Bmn sin nyÞY mnðxÞ

" #
sin Ot; ð19Þ

where Amn and Bmn are undetermined coefficients, and M and N are the numbers of the basic
functions used in the approximation.
The nondimensional natural frequency O of the transverse vibration is

O ¼ ON

ffiffiffiffiffiffiffiffiffiffiffi
rhR4

D

s
; ð20Þ



ARTICLE IN PRESS

R. Maretic / Journal of Sound and Vibration 280 (2005) 467–478472
where ON is the natural frequency. Ymn are the functions chosen to satisfy the boundary
conditions of the plate. They are presently assumed to be of the following form:

Y mn ¼ ð1� x2Þ
2x2mþn: ð21Þ

Substituting Eqs. (19) and (21) into Eq. (16) and applying the Galerkin’s procedure the
following equations are obtained

XM
m¼0

2Am0ðam0i0 � O2xm0i0Þ þ Am1ðbm1i0 � zm1i0Þ
� �

¼ 0; i ¼ 0; 1; . . . ;M; ð22Þ

XM
m¼0

2Am0bm0ijd1j

þ
XM

m¼0

XN

n¼1

Amn 2ðamnij � O2xmnijÞdnj þ bmnijðdna þ dnbÞ þ zmnij dna � dnbð Þ
� �

¼ 0;

i ¼ 0; 1; . . . ;M; j ¼ 1; . . . ;N; ð23Þ

XM

m¼0

XN

n¼1

Bmn 2ðamnij � O2xmnijÞdnj þ bmnijðdna þ dnbÞ þ zmnijðdna � dnbÞ
� �

¼ 0;

i ¼ 0; 1 . . . ;M; j ¼ 1; . . . ;N; ð24Þ

where a ¼ j � 1 and b ¼ j þ 1, while

dks ¼
0 for kas;

1 for k ¼ s;

(

amnij ¼

Z 1

0

amnY ijxdx; bmnij ¼

Z 1

0

bmnY ijxdx;

zmnij ¼

Z 1

0

cmnY ijxdx; xmnij ¼

Z 1

0

Y mnY ijxdx: ð25Þ

The expressions to be integrated in Eq. (25) are

amn ¼
d4Y mn

dx4
þ
2

x

d3Y mn

dx3
�

1þ 2n2

x2
þ ZN1

� �
d2Y mn

dx2

þ
1þ 2n2

x3
�

Z
x

C1 þ Zlx

� �
dY mn

dx

þ
n4 � 4n2

x4
þ ZC1

n2

x2

� �
Y mn;



ARTICLE IN PRESS

R. Maretic / Journal of Sound and Vibration 280 (2005) 467–478 473
bmn ¼ Z �N2
d2Y mn

dx2
þ le �

C2

x

� �
dY mn

dx
þ C2

n2

x2
Y mn

� �
;

cmn ¼ � Z
n

x
2S1

dY mn

dx
�
2

x
S1Y mn þ leY mn

� �
: ð26Þ

Two independent equation systems have been formed in this way. The first consists of Eqs. (22)
and (23) and is used to determine the Amn coefficients. The second contains Eq. (24) and is used to
determine the Bmn coefficients. Based on these equation systems two frequency equations are
formed.
When l ¼ 0 or e ¼ 0 solving Eqs. (22) and (23) provides symmetric and asymmetric solutions,

and when solving Eq. (24) only asymmetric solutions are obtained, which are the same in both
cases. However, if l40 and e40, the solutions of the formed frequency equations are different.
That means that in the same mode shapes the frequency split occurs. The frequency split occurs in
the case of asymmetric modes ðna0Þ, so the frequencies obtained from Eqs. (22) and (23) will be
denoted by the index c (because the Amn coefficients multiply cos ny), for example (0,1)c, while the
frequencies obtained from Eq. (24) will be denoted by the index s (because the Bmn coefficients
multiply sin ny), for example (0,1)s.
4. Results and discussion

The accuracy of the solutions obtained solving the frequency equations depends on the number
of Y mn functions used, and thus on the numbers M and N. The convergence test is shown in the
Table 1, where the nondimensional frequencies O obtained for different mode shapes and different
M and N values are compared. The mode (m,n) represents a mode with m nodal circles and n
nodal diameters.
Table 1

Convergence characteristics of the frequencies parameter O

M N Mode (m,n)

(0,0) (0,1)c (0,1)s (0,2)c (0,2)s (1,0)

l=0 2 2 10.21583 21.26047 21.26047 34.87767 34.877671 39.92111

e=0 3 3 10.21583 21.26040 21.26040 34.87704 34.877039 39.77330

4 3 10.21583 21.26040 21.26040 34.87703 34.877035 39.77116

4 4 10.21583 21.26040 21.26040 34.87703 34.877035 39.77116

5 4 10.21583 21.26040 21.26040 34.87703 34.877035 39.77115

Leissa [8] 10.216 21.261 21.261 34.877 34.877 39.771

l=10 2 2 8.52412 21.59754 21.89370 36.34802 36.34854 41.22388

e=0.5 3 3 8.51921 21.57181 21.87311 35.76150 35.76478 41.21033

4 3 8.51867 21.57104 21.87304 35.76120 35.76465 41.20753

4 4 8.51866 21.57082 21.87282 35.74801 35.75145 41.20752

5 4 8.51865 21.57082 21.87282 35.74801 35.75144 41.20751
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In this example, as well as in all others, the value of the Poisson ratio v is assumed to be 0.3. The
results obtained are compared with numerical results presented by Leissa [8].
Note that for M43 and N43 the vibration frequency changes insignificantly. The differences

are bigger in the case of higher values of the nondimensional angular speed l and nondimensional
eccentricity e, as well as mode shapes. This paper assumes the values of M=5 and N=4.
Fig. 3 illustrates the changes in the nondimensional frequency O with respect to nondimensional

angular speed l and nondimensional eccentricity e in the fundamental mode shape (0,0). It can be
seen that the increase in the angular speed and eccentricity leads to the decrease in the frequency
of transverse vibration. All these functions show a monotonous decrease. Naturally, all the curves
originate from the same point which represents the frequency of a stationary (not rotating) plate.
The critical values of the angular speed can be discussed based on this figure. The critical angular
speed is defined as the angular speed at which the natural frequency becomes zero. Table 2 shows
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Fig. 3. The dependency of the nondimensional frequency O on the angular speed l and nondimensional eccentricity e in

the fundamental mode shape.

Table 2

The critical value of the nondimensional angular speed l with respect to the eccentricity e

e l Maretic [9]

0 38.8534 38.8533

0.1 35.0105

0.2 28.5053

0.3 23.1388

0.4 19.1749

0.5 16.2482

0.6 14.0388

0.7 12.3280

0.8 10.9719

0.9 9.8744

1 8.9702

1.5 6.1264

2 4.6388



ARTICLE IN PRESS

.

.

. . . . . . . . . . . . . . .
.

.
.

.

.

.

. . . . . . . . . . . . . . . . . . .

.
.

. . . . . . . . . . . . . . . . . . ..
.. . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . .

25

27

29

31

33

35

37

39

0 10 20 30 40
 λ

0=e 0.1
0.2
0.3

0.4

0.5
Mod (0,2)

35

37

39

41

43

45

47

0 10 20 30 40
λ

Ω

0.1
0.2
0.3

0.4

0.5

0=e

Mod (1,0)

. .. . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . .

60

62

64

66

68

0 10 20 30 40
λ

0.1

0.2

0.3

0.4

0.5

0=e
Mod (1,1)

λ

. . . . . . . . . . . . .
.

.
.

.

.

. . . . . . . . . . . . . .
.

.
.

.
.

. . . . . . . . . . . . . . . . . .
.

.
.

.

. .

. . . . . . . . . . . . . . . . . . . . . . . . .
.

.
.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

 Ω
0.1

0.2
0.3

0.40.5

0=e

0 10 20 30 40 50 60

5

10

15

20

25

. . .

.

...

.
.

..

Mod (0,1)

.
.

.

A

B

Fig. 4. The dependency of the nondimensional frequency O on the nondimensional angular speed l and

nondimensional eccentricity e: ——, frequency c,y, frequency s.
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some critical values of the nondimensional angular speed with respect to eccentricity, as well as
the comparison with the results given in the paper of Maretic [9]. It is obvious that the critical
angular speed decreases monotonously when eccentricity increases.
Fig. 4 illustrates the changes in the nondimensional frequency O with respect to the parameter l

and eccentricity e for the modes shape (0,1), (0,2), (1,0) and (1,1). It can be noted here that the
increase in eccentricity decreases the vibration frequency, similar to the fundamental mode shape
case. However, these mode shapes in certain areas show the tendency to increase the frequency
when increasing the angular speed (parameter l). This phenomenon occurs at lower angular
speed values. At higher angular speed values frequency monotonously decrease. In addition,
the influence of eccentricity on vibration frequency change is significantly less than in the
fundamental mode shape, when values of l rise to 40. All mode shapes, with the exception of (0,1),
show that when l=40 the change in eccentricity from 0 to 0.5 results in the frequency decrease of
up to 10%.
As has been mentioned earlier, in the case of asymmetric mode shapes (n40) the frequency split

occurs. The frequencies determined by solving the frequency equation obtained from Eqs. (22)
and (23) are represented by the continuous line, while those determined from Eq. (24) are
represented by the dotted line. It can be seen that the frequency differences for the same mode
shapes depend on the mode shape itself and that they are significant in the (0,1) mode shape, while
being much less in the case of other mode shapes. The fact that in the (0,1) mode shape the
frequency lines (0,1)c and (0,1)s intersect deserve special attention. In that case the split frequencies
become equal for the certain values of the angular speed. By connecting the points with equal
frequencies the line AB is obtained. It is possible that similar phenomena occur in other mode
shapes as well, but they were not observed within the range of the nondimensional parameter of
the angular speed (l less than 40).
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5. Mode shapes

The eccentricity of the plate rotation and its angular speed have a significant influence on the
mode shape. Figs. 5–8 show the influence of the nondimensional angular speed change on
mode shapes, assuming eccentricity at a value of 0.3. The mode shapes considered are (0,0), (1,0)
and (0,1). The plates rotate around the c-axis, while o is the axis of symmetry of the undeformed
plate.
In the case of the fundamental mode shape (0,0) the mode shape stops being axisymmetric

as soon as the angular speed becomes more than zero. The deformation occurs and the ‘‘top of
the hill’’ dislocates away from the axis of rotation due to the influence of inertial forces. A
similar effect occurs in the case of increasing eccentricity at a constant angular speed,
although that is not shown in the figure. Otherwise, the mode shapes are symmetrical
with respect to the plane containing the axes c and o. Similar conclusions can be made in the
case of the (1,0) mode shape in Fig. 6, which has a single nodal circle when the plate does not
rotate. In the case of eccentric rotation the nodal circle is deformed and lengthened in the
direction of inertial forces.
c c c c co o o o o

λ = 0 λ = 5 λ = 10 λ = 15 λ = 20

Fig 5. The effect of nondimensional angular speed variation on the mode shape (0,0) for e=0.3.

λ = 0 λ = 5 λ = 10 λ = 15 λ = 20
c c c c co o o o o

Fig. 6. The effect of nondimensional angular speed variation on the mode shape (1,0) for e=0.3.

A A A

View  A View  A View  A

c c c
o o o

c c co o o

λ = 0 λ = 10 λ = 20

Fig. 7. The effect of nondimensional angular speed variation on the mode shape (0,1)c for e=0.3.
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View  A View  A View  A

c c co o o

c c co o o

λ = 0 λ = 10 λ = 20

Fig. 8. The effect of nondimensional angular speed variation on the mode shape (0,1)s for e=0.3.
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The (0,1) mode shape has two variations shown in (0,1)c Fig. 7 and (0,1)s Fig. 8, because the
frequency split occurs in this mode shape. The view from A direction, which is defined by the
arrow shown, is given for each mode shape. The nodal diameter distorts in the (0,1)c mode shape
with the plate rotation. There is a symmetry with respect to the plane containing the axes c and o
in this mode shape. In the (0,1)s mode shape the nodal diameter does not distort, but remains
straight. The plate deforms so that there is a symmetry with respect to the plane containing the
axes c and o, and the view A is from the direction perpendicular to that plane.
6. Conclusions

The results of the present analysis of an eccentric rotating circular plate may be summarized as
follows:
1.
 The influence of eccentricity and angular speed on transverse vibration frequencies is especially
large in the case of (0,0) and (0,1) mode shapes. With the higher mode shapes the influence of
eccentricity on frequencies is substantially less for the values of l considered.
2.
 There are two frequency equations which result in the frequency split in asymmetric (na0)
mode shapes. The difference between the two frequencies is significant in the (0,1) mode shape.
3.
 Eccentricity and rotation can result in the loss of stability of the plate. Critical angular speed
decreases with eccentricity increase.
4.
 The mode shapes deform additionally due to the influence of eccentricity and inertial force. The
tendency of moving away the ‘‘top of the hill’’ from the axis of rotation can be observed in
cases of the fundamental (0,0) and the (1,0) mode shapes.
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